

CoreSolutions Software Inc.

FileMaker Pro Naming Standards

Version 1.3

Exceptions to FileMaker Inc.’s FileMaker Development Conventions

CoreSolutions Software Inc. provides this paper to its employees and clients to document the differences
that exist in naming conventions between FileMaker Inc.’s FDC document and CoreSolutions’ development
practices. Please see the Adherence section at the end of this document for more information.

Where some naming conventions are left to the discretion of the developer, consistency must be an
underlying theme in any project.

Contact information:

CoreSolutions Software Inc. | 1-1615 North Routledge Park | London, ON N6H5L6

T: 519.641.7727 | TF: 800.650.8882 | W: www.coresolutions.ca

Table Occurrences

• Should be arranged in disconnected Table Occurrence Groups (TOG’s) that support certain
functionality within the solution. This is similar to the FTOG method detailed in the FDC document.

• Include a TOG for base tables only. These table occurrences will enforce referential integrity
(cascading delete rules) and will serve as the table occurrence for items like calculations, solution
update imports etc. These TO’s will be named with a leading underscore, a 2- or 3-digit serial
number, a 3-character base table code and the base table name.

• The TOG Wrapper is a text box that encloses the TOG. It will show the TOG group code in all
caps with a description in plain text and will show the number series to use for the serial number.
Also included will be the last used serial number. Each time a new TO is added to the TOG, its
serial value is updated in the wrapper. The colour of the wrapper may be used to better separate
different TOGs on the graph.

Base Table Group

Syntax:
[_]<<SerialNumber>>[__]<<BaseTableCode>>[__]<SourceTableName>

• Base Table Code: 2 to 4 character short form of the table name, all caps

EExxaammpplleess::

_001__COMP__company
_002__CONT__contact
_003__INV__invoice

Other Table Groups

Syntax:
<<GroupLetter>><SerialNumber>[__]<<FunctionalGroupCode>>[__]<<BaseTableCode>>[__]DescriptiveNa

me

• Functional Group Code: 2 to 4 character code that names the functional group in lower case.
Indicated as the “title” of the enclosing text box around the TOG.

• Group Letter: each TOG should have a letter assigned to it by the developer. It could be, but
doesn’t need to be related to the Group Code. The intent is to put the serial number near the
beginning of the TO name to make it easier to select from a list of TO’s or to jump to a TO in the
graph by typing the first few characters. Since FileMaker Pro does not permit a TO with a leading
number, the Group Letter must precede it. In large systems the Group Letter may be two letters.
The letter’s case is left to the discretion of the developer.

• Serial Number: each TOG should have a series of 2- or 3-digit numbers named in the enclosing text
box (TOG wrapper) of the TOG (ex: CM — Contact Management — 000). The developer should
keep the last used number in that text box (ex: Last used: 245). There is no sequence to the
numbers with relation to the TO’s; it is left to the developer to decide what span the numbers
should have. Since some dialogs display related TO’s in alpha order, the numbering will affect that
list and the developer can use this property to control the sort order of the TO’s in a TOG. The
numbering for each TOG does not need to be unique since the Group Letter will make re-used
numbers unique. In other words TO’s with a prefix of A001 and B001 are allowed. Some
developers may prefer to use 2-digit numbers. Some developers may wish to use larger numbers to
designate a sub-group within the TOG: D401, D402.

• Base Table Code: 2 to 4 character code from the base table occurrence in lower case.

• Descriptive Name: a name that describes the TO’s function or purpose.

EExxaammppllee 11::

TOG wrapper
CM — Contact Management —A00
Last used: A02

A01__cm__comp__company
A02__cm__cont__companyContact

EExxaammppllee 22::

TOG wrapper
INM — Invoice Management — B000
Last used: B004

B001__inm__comp__client
B003__inm__inv__clientInvoice

Field Names

Key Fields

The syntax used in the FDC paper (leading underscore for key fields only) is inconsistent with other aspects
of the paper. In addition, it is not necessary to connect to table occurrences using key fields when the
relationship is first being created: dragging any field from one TO to the other and double-clicking on the
“=” symbol will bring up the Edit Relationship dialog. From here, clicking in either the right or left TO field
list and typing the first few characters of the field you want will auto-scroll to that field. We feel we would
rather spend that extra second editing the relationship than sacrifice consistency in field naming. Of course,
keeping our original zk prefix for keys means less confusion for our developers too.

Storage is different from the FDC as well since all fields are assumed to be locally stored unless they are
global.

Syntax:

[zk__]DescriptiveName[__]<function><storage><type>

• zk__: (lower case) Will serve to denote the field is a key field and sort it among the other
developer fields.

• DescriptiveName (Camel Case): Key Field Descriptive Name. For Primary keys, this should be the
table code in upper case followed by “ID”. For foreign keys, use a descriptive name in camel case
followed by “ID”.

• __: Double Underscores should be used to separate the key syntax from the name chosen for the
field.

• function (lower case): Denotes key field category and/or function it will serve.
− p — Primary Key
− f — Foreign Key
− a — Alternate Key
− c — Compound / Concatenated / Calculated Key
− m — Multi-Line Key

• storage (lower case): Denotes field storage. All key fields are assumed to be locally stored except
those that are global.
− g = Globally Stored

• type (lower case): Denotes field type. Only necessary for non-primary or non-foreign keys since
those are ALWAYS text.
− t = Text
− n = Number
− d = date
− i = Time
− m = Time Stamp

EExxaammpplleess::

zk__INVID__p

zk__companyID__f

zk__selectedPortalRow__agt

Developer Fields

Two changes from the FDC: prefix always starts with “z” but can be further defined by its second function
character. Storage follows the same rules as above.

Syntax:
[z]{function}[__]DescriptiveName[__]><storage><type><repetition>

• z: Indicates the field as a developer field and sorts to bottom of all dialogue boxes where field
names are present.

• function: Provides a developer defined categorization for extending as necessary. As the developer
you are able to define the various categories. Suggestions:
− c = Calculations used by the developer
− k = Key fields (See definition and syntax of Key Fields above)
− i = Interface fields used to control or manipulate the interface
− v = Variable or temporary fields

• __: Double Underscore denotes separation of prefix and suffix from Descriptive Name

• DescriptiveName: Developer selected desired name. Follows general field guidelines.

• storage: Used to denote the field storage. All fields are assumed to be locally stored so only
designating the globally stored fields is required.
− g = Globally Stored

• type: Indicates the data type used or returned.
− Non-Calculated “Standard” Result Types

o t = Text
o n = Number
o d = Date
o i = Time
o m = Time Stamp
o r = Container

• Calculated Result Types
o ct = Text
o cn = Number
o cd = Date
o ci = Time
o cm = Time Stamp
o cr = Container

• Summary Result Type
o s = Summary

• repetition: indicates the data is stored with repetitions
o p = repetitions

Field Suffix Reference Text Number Date Time Time Stamp Container

Utility Fields / General & Calculated Fields Using Notation

General (local Storage) __t __n __d __i __m __r

General (Global Storage) __gt __gn __gd __gi __gm __gr

Calculated (local Storage) __ct __cn __cd __ci __cm __cr

Calculated (Global Storage) __gct __gcn __gcd __gci __gcm __gcr

Repeating
(Add “p” to end of notation,
in lowercase)

p p p p p p

Summary (Local Storage) N/A __s N/A N/A N/A N/A

EExxaammpplleess::

invoiceTotal__s

zc__nameModifier__t

zc__dateModified__d

zv_totalPages__gnp

zc_recordCount__cn

zc_currentUserName__gct

Layouts

For systems where the Status Toolbar is exposed to the user, the developer should use human-readable
layout names. For other layouts not exposed to the user (reports, or where the toolbar is not exposed) use
the layout naming convention described below.

Syntax:
<<FunctionPrefix>>[__]DescriptiveName{[__]orientationCode}

• Function Prefix: Provides general syntax to allow for developer defined prefixing determined by
their specific needs and preferences, while defining a universally understood syntax. If you choose
not to use any Functional Prefixing simply omit it and start with the Logical Name. There is no need
to include the first “__”. The general recommendation is to use a one to five character indicator
and select a case convention for the function.

• Descriptive Name: Provides method to give a ‘somewhat’ user-friendly name to the layout.

• Orientation Code: for printed layouts use an optional orientation code to describe the layout’s
orientation and page size using the following codes. Scripts can use this suffix to programmatically
determine the correct page setup script step to execute.
__pleg = portrait, legal
__plet = portrait, letter
__lleg = landscape, legal
__llet = landscape, letter

• Separators: The usage of “__” double underscores is the character. This allows the usage of
underscores within Descriptive Name and Table Occurrence Name, while still providing readability
and parsing capabilities.

EExxaammpplleess::

edit__companyInfo

find__searchInvoices

dev__allFields_company

rpt__CompanyListLong__llet

Custom Functions

Public Custom Functions

Syntax:
CustomFunctionName[__][cf]

• Suffixed with “__cf” (cf lowercase): Identifies within any calculation that the function is a custom
function. All functions are assumed to be a public type unless otherwise indicated.

EExxaammpplleess::

ArrayBuilder__cf

DateFormat__cf

Private / Subordinate Custom Functions

A Private / Subordinate Custom function is one intended only to be called by another custom function,
whether by a Public Custom function or another private custom function. We have chosen to use the
syntax to indicate Private/Subordinate using the “Sub” term to make it consistent with the ordination of
scripts. Families of custom functions, where there is at least one subordinate function, should be named
similarly; the names should start out the same (see the example below).

Syntax:
CustomFunctionName[__][cfSub]

• Suffixed with “__cf” (cf lowercase, Sub in upper Camel Case): Identifies within any calculation that
the function is a custom function and is of the Subordinate type.

EExxaammpplleess::

Luhn__cf

LuhnProduct__cfSub

LuhnDoubleEven__cfSub

Custom Function Parameters

Parameters defined in a custom function cannot be share the same name as a field or another function. For
that reason, all parameters for custom functions should have a leading underscore. Using this method, it’s
possible to use a parameter of “_Date” without impinging on the existing Date function where any other
name for the parameter might not be suitable.

Syntax:
CustomFunctionName[__][cf] (_parameterName1, _parameterName2)

• Parameters have a leading underscore and are in lowerCamelCase

EExxaammpplleess::

FormatDate__cf (_date, _long1, _day1)

TimeFormatAs__cf (_timeField, _type12or24)

Scripts

Robust solutions tend to have many scripts. As a result, finding the script that may be attached to a button
is often cumbersome. For that reason, a numbering convention has been developed to easily refer to the
script and to find it in a list.

Syntax:
<<NumberPrefix>>[]DescriptiveName[]{[}<ExpectedParameter>{;}{]}

Number Prefix: this is a four-character number with leading zeroes. Scripts can be numbered by one within
a functional grouping (0401, 0402, etc) or by some multiple to allow “space” for future scripts (0405,
0410, 0411, 0415, etc). The developer may also wish to use decimals to denote sub-scripts or add a script
in a particular order where the numbering has been done by one and no “space” exists (0401, 0401.1,
0401.2, 0402, etc).

Descriptive Name: detailed description of the function or purpose of the script. May also include text to
indicate expected script parameters.

ExpectedParameter: if a script is designed to accept parameter(s), there are two different formats that can
be used. If the parameter is a named parameter, indicate it with a leading underscore (_) and its name. If
the script is expecting a simple value or one of several expected values, list the values separated by a slash.

EExxaammpplleess::

0101 Opening Script

0401 New Record

0401.1 New Record [Commit]

0601 Sort Column Contact [1/2/3/4/5/6]

0801 Tab Navigation [_table ; _view]

Script Groups

Scripts should be grouped by function with a folder as the header for the group.

Syntax:
<<NumberPrefix>>{ ----- }<FunctionOrGroupName>{ ----- }

Number Prefix: this is a four-character number with leading zeroes. Group numbers should be a multiple of
100.

Function or Group Name: Indicates what the group’s basic function is. Over the years, common groups
have been developed that most solutions will require. The developer is free to make up a new group or
change the name of existing ones.

EExxaammpplleess::

0100 ----- OPERATIONS -----

0500 ----- PAGE SETUP & PRINT -----

1600 Triggers

Adherence

CoreSolutions’ FileMaker Pro Naming Standards conforms to the FileMaker Development Conventions
detailed in the white paper dated Nov. 1, 2005. Areas that deviate from that document are stated above. It
is intended that, according to the Adherence section of the FDC document, this document and the FDC
whitepaper accompany any documentation supplied to our clients. The reason for this is so that if future
development is required, documentation detailing our naming conventions and development standards is
available to the client in the form of this document and FileMaker’s FDC whitepaper (currently located at
http://www.filemaker.com/downloads/pdf/FMDev_ConvNov05.pdf). The text from this document may
also be included on a screen available from a solution’s About screen.

Syntax Legend
The FDC document uses a specific style to indicate the various components of any syntax used within the
various sections. The following table explains the various notations.

FDC Syntax Legend

 No Enclosing Characters indicates optional and natural/free form naming

[] Enclosed component are intended to be used as displayed

{ } Enclosed components are optional and definable by developer

< > Enclosed components are intended to be supplied but have a defined or inferred value

<< >> Enclosed components are intended to be supplied and definable by developer

Version History
1.3 — December 2010 — changed naming rules for primary keys, layouts, scripts, script groups, updated

graphics

1.2 — February 2010 — changed naming rules for table occurrences, layouts

1.1 — May 2007

1.0 — January/February 2006

